ar X iv : m at h / 04 02 34 6 v 1 [ m at h . O C ] 2 1 Fe b 20 04 Applications of Lefschetz numbers in control theory

نویسنده

  • Peter Saveliev
چکیده

The goal of this paper is to develop some applications of the Lefschetz fixed point theory techniques, already available in dynamics, in control theory. A dynamical system on a manifold M is a map f : M → M. The current state, x ∈ M, of the system determines the next state, f(x), and its equilibria are the fixed points of f, f(x) = x. More generally, one deals with coincidences of a pair of maps f, g : N → M , f(x) = g(x), between manifolds of the same dimension. The main tool is the Lefschetz number λfg defined in terms of the homology of M,N, f : if λfg 6= 0 then there is at least one coincidence. Moreover, since all properties established through homology are ”robust by nature”, any pair f , g homotopic to f, g has a coincidence as well. In the control situation, the next state f(x, u) depends on the current one, x ∈ M, as well as the input, u ∈ U. It is described by a map f : N = U×M → M and its equilibria are the coincidences of f and the projection g : N = U × M → M . Since in this case the dimensions of N and M are not equal, the Lefschetz number has to be replaced with the so-called Lefschetz homomorphism. In this paper the Lefschetz homomorphism is applied to detection of equilibria and controllability. The secondary objective is to study robustness of these properties; for example, we find out when small perturbations of the systems can lead to the loss of equilibria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 02 04 28 5 v 1 [ m at h . G T ] 2 3 A pr 2 00 2 FIBER SUMS OF GENUS 2 LEFSCHETZ FIBRATIONS

Using the recent results of Siebert and Tian about the holomorphicity of genus 2 Lefschetz fibrations with irreducible singular fibers, we show that any genus 2 Lefschetz fibration becomes holomorphic after fiber sum with a holomorphic fibration.

متن کامل

ar X iv : h ep - p h / 04 02 29 2 v 1 2 7 Fe b 20 04 1 SU ( 3 ) Chiral Effective Field

A personal overview on the present status of SU(3) chiral perturbation theory in the baryonic sector is given. Recent developments are presented and remaining challenges are pointed out.

متن کامل

ar X iv : m at h / 04 02 39 3 v 1 [ m at h . G T ] 2 4 Fe b 20 04 CYCLIC BRANCHED COVERINGS OF ( g , 1 ) - KNOTS

We study (g, 1)-knots and their strongly-cyclic branched coverings, proving the necessary and sufficient conditions for their existence and uniqueness, and characterizing their fundamental groups. As a relevant example, we prove that generalized periodic Takahashi manifolds belong to this family of manifolds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004